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Mass transfer in a chain of absorbing drops at low Reynolds and high P&let 
numbers is investigated using the simplest mathematical model of internal dif- 
fusion, i. e. of total intermixing inside of drops of the substance diffusing 
through the drop surface. Present investigation is an extension of results obtain- 
ed in [I.-41 which relate to the limit case of short time intervals. It is shown 
that the allowance for internal diffusion leads to a substantial alteration of the 
system kinetics owing to the saturation of drops in time, Thus, when the drops 
are of equal radii, there always exists a time interval in which a particular 
drop of the chain absorbs more of the substance diffused in the stream than 
remaining drops of the chain. 

The problem of steady convective diffusion in a chain of reacting particles was 
previ~sly considered El-43 under condition of total absorption at their surface at 
high P&let numbers. It was shown that the interaction of the diffusion boundary layer 
of every particle with the diffusion trail of the preceding particle results in a consider- 
able decrease of the total diffusion flux to its surface (in comparison with that without 
such interaction). Since drops can absorb only a limited quantity of the substance dis- 
solved in the stream, such simplification of the problem formulation is justified when- 
ever it is possibXe to disregard variations of substance concentration inside drops (for 
instance in the analysis of weak absorption or comparatively short intervals). 

l. Statement of the problem. Letusconsidertheprocess of 
convective diffusion in a chain of absorbing drops ofthe same radius a equally spaced 
and mov~g at the same velocity u. We assume that away from the drops the eon- 
centration of substance dissolved in the stream is constant and equal co, and that 
inside drops a complete intermixing of the substance diffusing through their surfaces 
takes place, i.e. that the concentration inside the drop and on its surface is the same 
and equal Ck’ (where k is the ordinal number of a drop in the chain). The substance 
concentration c outside the drop, and CR* inside it are linked by the law of con- 
servation of mass, i. e. the total change of substance inside the drop in a unit of time 
4/.s 3ta3dCk+ / .& must be equal the total influx of diffusing substance from the sur- 
rounding fIuid x 
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where rk and 6, are spherical coordinates of a system attached to the center of 
the k -th drop. It will be seen that the concentration inside a drop depends on its 
ordinal number and time. 

Below we assume that the Reynolds number R = aUv_l of the drop is low while 
the &let number P = aUD_l is high (V isthekinematic viscosity of the fluid 

and D is the coefficient of diffusion). 

It was shown in [5] that under condition of total absorption on the particle surface 
Cl+ = 0 and P > 1 the total diffusion flux I,*- aDC,,Pl/(“+l), where n = 1, 
to it corresponds to drops of moderate viscosity P d fJ (I), while n = 2 relates 
to drops of high viscosity p > 0 (P/3), where p is the ratio of viscosities of drops 
and fluid. The value n = 2 also corresponds to the case of moderate viscosity drops 

when surface-active substances are present [5]. 
Using the law of conservation of mass and the indicated expression for the total 

diffusion flux I,*, we find that the characteristic time of concentration change in- 
side the drop is aaU-rPni(n+r) ; th e numerical coefficient h = 0 (1) will be de- 
fined later. This time is taken below as the basic unit for conversion to dimensionless 

time ‘6. 
In dimensionless variables the boundary value problem which determines concentra- 

tions c and c,, + in-and outside drops may be represented in the form 

rl( :- I, c = c~+(T); r-+ m, c--+1; T = 0, c = c*(r, 0) 

ck+ (0) = 0; e ;= p-licn+l) 
I n=1,2; k=1,2 ,..., M 

where the system of spherical coordinates r-, 8 is attached to the center of some part- 
icular drop, and the characteristic units are: the drop radius a, its velocity W, the 
time ha Udleen, and concentration C,,; the stream function 11) is assumed known 

from the solution of the respective problem of hydrodynamics of flow around a body. 
The initial condition for concentration c* (r,e) is defined by the solution of the 
stationary (8 / 87 = 0) equation (1.1) of convective diffusion under condition cl’= 

ca +i:, =- cbf+ = 0 of total absorption on drop surfaces of the substance dissolv- . . . _ 
ed in the fluid. 

Problem (1.1) was thoroughly investigated in [l, 21 in the steady case and c;’ = 
ca += + . . . == CM = conet for n = I , and for n = 2 it was dealt with in 

[3,4]. It was shown, using the method of merging asymptotic expansions in the small 
parameter e , that in the stream near each drop there exist several characteristic 
regions with different mass transfer mechanisms. These are: the external region e, 

the region d = {F - 1 ( 0 (e), 0 (8) 2 8) of the diffusion boundary layer (the 
expression in braces indicate the order of characteristic dimensions of the considered 
region and subscript k is omitted at spherical coordinates), and the diffusion trail M! 

which, in turn, consists of four subregions, viz. the convection boundary layer region 
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W(l) = (0 (8) < r - 1 < 0 (E-l), 0 (an+‘) < 4 < 0 (en)}, the diffusion trail 
inner region WC’) = (0 (E) < r - 1 < 0 (e-l), * < 0 (e”+l)}, the trailing 
stagnation point region W3) = {r- 1 < 0 (E), 8 ( 0 (e)} , and the mixing 
region W4) = (0 (E-‘) < r - 1, 11) ( 0 (C)}. 

As already noted, concentration in the steady case rapidly changes near the drop 

surface (within the boundary layer) and [o?c / drh lrkEl N IF. Hence the in- 
tegral in the right-hand side of ~q. (1.2) is of order unity. 

In the unsteady problem (1. l), (1.2), as in the steady one, when E --f 0 the 
convection term (~‘7) c in regions d, and WC3) is proportional to 0 (P-1) C, and in 

regions W(l), WG, and WC4) is proportional to 0 (1) C, and the order of magnitude 
of the right-hand side of Eq. (1.1) in the respective regions is as follows: in d, W(s) 

- E~-~c, in W(l) - a c, and in W(2) and j$‘c4) - 0 (1) C. Hence by a 

successive determination of equations and boundary conditions in a manner similar to 
that in [l-4] we obtain that in the principle term of expansion in the small parameter 
a for concentrations cl+, cs+, . . ., ch+; c the term e”dc / dz in Eq. (1.1) is im- 

material, while Eqs. (1.2) for concentration inside drops remain in their entirety valid 
by virtue of F 13~ / &-kl,,=,- 0 (1). 

Thus the solution of the input problem (1. l), (1.2) consists of two consecutive stag- 
es: 1) solution of the auxilliary problem 

(Vv) C = En+’ A C; rk = 1, C = Ck+; 7. = 00, C = 1 (1.3) 
for arbitrary cf in which time z appears implicitly as a parameter, and 2) solution 
of the autonomous system of ordinary differential equations 

4n &.+ / dz = 3&hIk, ch.+ (0) = 0 (k = 1, 2, . . .) M) (1.4) 

in which the over-all diffusion flux Ik is calculated by (1.2) using the obtained solu- 
tion of (1.3) for concentration c = C (rk, 8,; Cl+, . . . , Ck+). By virtue of the in- 
itial condition for concentration inside drops ck+ (0) = 0, hence the derived solution 
automatically satisfies the initial condition at ‘G = 0 in the input problem (1. l), (1.2). 

Investigation of the auxilliary problem (1.3) can be effected as in [l-4]. Here 
we restrict it to the case in which the dimensionless distance satisfies the inequality 

0 (1) < 1 < 0 (E-l) (1.5) 
The left-hand side of this inequality is subsequently of little consequence, since 

it is only required for providing a specific form to the stream function near the surfaces 

of drops (when 1< 1 in Eq. (1.3) the stream function of an isolated drop may be 
used,see Sect. 2). The right-hand side of this inequality is important, since it shows 
that the diffusion boundary layer of every drop interacts with the convection boundary 

layer region of the diffusion trail of the drop ahead of it [l. 41. 
The system of Eqs. (1.4) contains total flrrxes on the drop surfaces which have to 

be determined by solving the auxilliacy problem (1.3). To determine the dependence 
of the principal term of expansion (in the small parameter E) of the total diffusion flux 

Ih_ on concernration c;’ , cs+ , . . ., ck + it is sufficient to calculate the concentca- 

tion distribution in the diffusion boundary layer of the k -th drop. The obtained ex- 

pression for total fluxes Ik = II, (cl+, cz”, . . . , ck+) must be substituted into the 

system of differential equations (1.4) that defines the variation of concentration inside 
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the drop in time. 

2. Solution of the auxflliary problem, Wederivehere 
the solution of a more general problem than (1.3), (1.5). Let us consider a chain of 
absorbing spherical drops of the same radius in a flow of periodic pattern [2,3], in 
which the stream function near the surface of any particle can be represented in a 
spherical coordinate system attached to the particle center in the form 

$=((r- lY f (S), f > 0, n=1,2(r-+j) (2.1) 

If condition (1.5) is satisfied, formulas f = l/z (1 --t p)-” SirI2 8 (n = 1) and 
f = 3/4 sin2 B (n y 2) correspond to a Stokes flow around particles of moderate (p 
< 0 (1)) and high (p > 0 (P”‘)) viscosities, respectively.Concentration distribu- 

tion in the diffusion boundary layer of the k -th sphere is defined by the solution of 
the boundary value problem with the boundary condition for concentration constancy 
on its surface and the condition for the oncoming flow, which is determined by the 
concentration distribution in the diffusion trail of the (k - 1) - st sphere [l-4], If 
the distance between spheres satisfies the inequality E < 0 (a-r), the condition for 
the oncoming flow is determined by the convection boundary layer region of the diffus- 

ion trail of the preceding sphere. 
The derivation of equations, and initial and boundary conditions for concentration 

CI;(‘) in the diffusion boundary layer of the (k - I)- st particle is analogous to that 

in [l-4] and yields the following boundary value problem: 
(at 

L (L tf CL -0, L,z(3/at_r;r-“a3fa~~ (2.2) 

clp’ (0, t) = Qi, #)(>OJ)= 1 (O<,‘<&)) 

ckd’ (5, 0) := cg (j, to), CJ ( I) = 1; t() = t (0) 
n 

t = t (0) = f 

\ 

‘sinBfr/“(0)&, I; = E-r$lln, hz = 1,2, . . . , M 

problem (2.2) was considered in [l--4] for cl’ = c2+ = . . . = qc = const . 
To solve (2.2) with arbitrary Ck” we use the auxilliary functiOn 

u&t) = r-l(+jY(+, 
Fn+l 

(n ;- 1pt 1 ’ r(5) = y(x, + 00) (2.3) 

where y is an incomplete gamma function, which is the solution of problem 

L, (5, r) u = 0; u (0, t) = 0, u ( 00, t) = 1; u (E, 0) = 1 

Taking into account the properties of function u (g, t) , we can prove by induction 

that the solution of problem (2.2k is of the form 

CP) (E, t) =I ch.+ + =?I u (E, t + (k - a) to) (c& - c,+) (2.4) 

co’ = 1, /C===1,2 )..., nil’ 

When c,+ :- c+ = . . . = Q+ = 0 t formula (2.4) yields ckf@ (g, 1) = u (2, 

t + (k - 1) to) P-41. 
For the local and total ‘&diffusion fluxes on particle surfaces we have 

j,, (0) 7 (i3&” / dr],,,, -= ,-lj* I?’ (0) [3#’ / a& In (2.5) 
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I = %cs*r-” /-&) (n -+ 1.)%& C*f ZE 1 

Uka = (k - Cl + 1)” - (k - CL)“, 0 = n / (Iz -+- 1) 

The results obtained with (2.3) can be extended to chains of particles of arbitrary 
shape in the case of three-dimensional flow and aperiodic pattern of the flow field(in 
the presence of two stagnation points on the particle surfaces), The concentration dis- 
tribution in the diffusion boundary layer and the convection boundary layer regions of 
the diffusion wake of the k -th particle is defined by formulas 

#‘(El tf = c&+ -I- ail % js7 t -!-.1;; tl’*) (&-_I - ca”) (2*6) 
- , 

cp (E) = CC’ (E, t&j), c*+ GE 1 (0 < t < &)) Ir: = 1,2, . . . , nr 

where 5 = &-l @/” (CD is the analog of the stream function) and the constant I&, 
and variable t are determined by the local flow field near the particle surfaces [Z, 31. 
For the total diffusion flux formula (2.5) remains valid. Kts coefficients I and afra 
can be calculated by formulas in [Z, 31. 

3. Time dependence of concentration change in- 
s i d e d r o p s. We consider here an axisymmetric array of drops in a flow field of 
periodic pattern. Substituting expression (2.5) for It, into Eq. (1.4) and defining 
coefficients 3L by the formula 

h = 43C (3&y = Y3 r (1 i (n + 1)) fn +- I)-9*-~ f3* 1) 

(h, = [a~ (8 -F- 1) / 6W, h, = 8I’ (I/& (Six)-*:s) 

for the concentration cl+, c2+ ? . . . , ck+ inside drops we obtain the linear system of 
ordinary differential equations 

The coefficients hl and hz correspond to a chain of drops of moderate and high 
viscosity in a Stokes motion mode with condition (1.5) satisffed and coefficients @a 
determined by formula (2.5). 

Since system (3.2) may also be written in the form 

G?Q+ / dz: + Q’+ = Fk (co+, Q+, . . . , &jr ck-+ (0) = 0 (3*3) 
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formulas for concentrations 
the first drop 

cr.+ can be successively determined, commensing with 

z 

ck+ (z) = e-T S eWk (co+, cl+ (E), . . . , c:-~ (E)) dE 
0 

(3.4) 

Using (3.4) it is possible to show by induction that for the concentration inside drops 
the following formula is valid: 

cr.+(t) = 1 -e--l + e-sPk-l (T), PO = 0 (3.5) 

The concentration cr+ in the first three drops changes in conformity with the law 

c;’ (z) = 1 - e-T, c2f = 1 - e-T - (2-2a) ze--’ (3.6) 

Ca+ (-c) = 1 - e-< - {(I + 2O - 3O) T + 1/z (2 -- 2a)2 .t2} e-’ 

The concentration distribution in the diffusion boundary layer and in the convec- 
tion boundary layer region of the diffusion trail of the k -th drop is determined by 

formula (2.4), where c;’ (r), . . . , ck+ (T) are defined by formula (3.5). A direct 
substitution of expressions derived in this way for crtd) and cr(l) into the input 

equation (1.1) shows that the presence of the unsteady term in (1.1) does not lead to 
the appearance of irregularities in the expansion in the small parameter F , as 
? - 00 (which theoretically may occur). This represents a further substantiation of 

the feasibility of reducing the complete problem (1. l), (1.2) to the consecutive solu- 

tion of Eqs. (1.3) and (1.4). 
For the total diffusion fluxes on the drop surfaces we have 

k-l k 
IkO = e-% url - Ai!!I~“-l + 3 2 ak,(Ap-‘) - Af’) ~fi 

(k=la-p+l 

(3.7) 

Al;k) = 0 t Ai2l = _ c2 - 2a)k-1 
(k - I)! 

where the expressions for coefficients ApI are derived by induction from (3.5). 
Formula (3. ‘7) shows that I,+.’ --t ah-r = Ica - (k - 1)~ as z + 0, which corres- 
ponds to the steady case under condition of total absorption on the surfaces of drops 

[l-4], and when T + cc we have IkO -+ 0, which corresponds to ” saturation” of 

drops (cr.+ --f 1). For the total diffusion fluxes we have the limiting relation 

hi lim- = kU - (k - 1)‘J 1, 2 -22’7 

z-+0 ‘k-1 (k - 1y - (k - 2)O ’ 
limL_=- 
T-co lJ Ih.-l k-i 

which shows that Ike (0) - Ik-10 (0) ( 0 and Ike (z) - Ir-lo (z) > 0 when 
z > 1. This imp&s that initially the total fltrx on the (k - 1) - st drop is greater 
than on the k -th drop which follows it in its diffusion trail, then after expiry of 
time -c = ~r,~_r these fluxes become equal, and this is followed by the total flux 
on the k -th drop becoming greater, 
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For the first three drops we have 

II0 = I?-‘, 1,’ = {P - 1 + (z-20) T} e-r (3.3) 

1,’ = {3(’ - 2” + (5.2a - 220 - 3O - 3) T + 1/2 (2-2°)2T2}e-Z 

which shows that the diffusion fluxes on the surface of the first two drops become equal 
at z=z,,=I. 

4. F u I t h e I g e n e I a 1 i z a t i o n a. We consider here the general case 
of mass transfer in a chain of drops of arbitrary shape in the field of flow around drops 
of an aperiodic pattern (the flow field away from the particle is assumed steady). The 
diffusion problem reduces to solving the following dimensionless system of equations: 

Enh-l & / at + (Vv) C = En+*&?; C rk = Cl;+, 
I Cl& = 1 (4.1) 

(4.2) 

(Below, the all characteristic dimensions of drops are assumed to be of the same 
order). In these equations the dimensionless time ‘t is the same as defined in Sect. 1; 

Ek and Vk are, respectively, surface areas and volumes of drops, and the initial 
condition for (4.1) is determined by the solution of the respective stationary problem 
under condition of total absorption on the drop surface. 

Using investigations [2,3] and a reasoning similar to that in Sect, 1, it is possible 
to show that when E - 0 the solution of problem (4. I), (4.2) is reduced to: 1) 
solving the steady equation (4.1) for any arbitrary ck+, 2) using that solution for cal- 
culating the total diffusion flux Ik = Ik (cl+, cZ+, . . ., ck+) in the right-hand side of 

Eq. (4.2), and 3) solving system (4.2) thus obtained for concentrations Ck+ . 

For calculating the principal term of the expansion of Ih. in parameter & it is 
sufficient to know the concentration in the diffusion boundary layer of every drop. 
Assuming that the. distance between drops is‘smaller than the characteristic length of 
their respective regions of the convection boundary layer trail, we use the remark in 

Sect. 2 and formula (2.6) for calculating the total flux zk . Formula (2.6) used 
for the determination of the right-hand side of ~q. (4.2) generally yields for the con- 
centration inside drops the system of equations 7. 

dck+ ’ 
YE-== c Yka C&l - cat), C”f = 1; c,;+ (0) =: 0 

where -yko > 0 are some, generally arbitrary, coefficients that can be calculated by 

(2.6) and [formulas in] [2,3]. 
If specific values of coefficients aka in (2.5) are disregarded, system (4.3) is 

the same as Eq. (3.2), except for the notation. Values of concentrations Q+ can 
be obtained successively, begin$ng with the first 

. 
$+ @) = exp (- YkkT) 

s 
exp (yk&) Fk* cc,+? %+ (4)). . . , cz--, (El) @ (4.4) 

0 
k-l 

F,* = ,+&$_l + 2 Yh_a @;_I - Ca+), %+ = ’ 
a=1 
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(4.5) 

Formula (4.5) indicates the form of the solution of (4,3); s (Ic) is the number of co- 
efficients Ym* (a = 1, 2, . . -, s (k)) differing in magnitude in the set of quantities 

Ynn n d k~ ‘a = ra (k) is the multiplicity of root y *. When ~11 = ~22 = . . . = 
Ykh- = 1 the coefficients Bt2f3 = 0, a > 2, and BIB (r= A (k) where Aptk) is 

determined by formulas (3.5) after the respective substitution “,f ?#a for IZ*~ . The 
other limit case when yh.k # ynn, and k # n leads to the following relations in (4.5): 

ra = 1, s (k) = k, ym* = yaa, Eatk) (IT) = L&h”) = const 
(4.6) 

Note that the exponents Yaa* in formulas (4.5) can be obtained from solutions 
of the system of equations that corresponds to the absence of diffusion interaction be- 

tween drops ( a system of drops in which only one drop is absorbing, while all remain- 
ing are neutral and do not absorb the substance dissolved in the stream; to which cor- 
responds the boundary condition [a~ 1 anIrk - 0 at their surface), i. e. of system(4.3) 
in which we must set yka = 0 with o # k and $.I = 1. 

As an example, let us consider a chain of spherical drops of various radii e (k), 

k = 1, 2, . . ., M, (I (k)/a (1) = 0 (I), moving one after another in a Stokes flow mode 

at the same velocity u , and satisfying condition (1.5). Taking the radius of the 
first drop as the basic unit of length, we determine coefficients I and A. using form- 

ulas (2.5) and (3. l), and obtain for the exponents ?$a in (4.6) the following expres- 
sions: 

yaa = [a (1) / a (,)]@n+l)~r@+r); n = 1, 2 (4.7) 

using formulas (2.6) and (4.2) and taking into account the results in [Z, 33, we shall 
iIdCate the eXpre&om for COeffiCier& ?ka’ in Eqs. (4.3) and adduce the final ex- 

pressions for the total diffusion fluxes Ike on the surface of the first two drops (x # 
1) x = a (2) a-1 (1) 

y*l = i, Yz2 = x-P+lMn+l), yzl = [(x(n+Q’n + I)0 - 11 x-s (4.8) 

1,” = e--7 , I,O = x3 (1 - y2,)( 1 - y22-1)-1[e-T - e-y2zT] + xSy2,emT 

Note that although formula (4.8) for I,’ was obtained for x # 1, it becomes (3.8) 
when 1c + 1 and z = const > 0. 

6. Discussion of ce8ultl. Formulas (3.5) and (4.5) defining con- 

centrations show that as z + CO , the drops become “saturated”, Ck+ - 1, and total 
diffusion fluxes Ik on their surfaces tend to vanish. If the chain consists of spherical 

drops of the same radius, the effect of saturation process on the interaction between 
diffusion boundary layers and particle trails is that in the beginning the total diffusion 

flux on the first drop is higher than on the second, then owing to saturation the concen- 
tration inside the first drop becomes higher than in the second. This, in turn, weakens 

the diffusion trail of the first drop (i. e., the difference hetween concentrations in the 

oncoming stream and in the trail diminishes) and, as shown in Sect. 3, at the instant 
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of time 
t = [‘/,n (p + 1) P]%zU-‘, f3 < 0 (1) (n = 1) 

t = 8r (‘/,)(8ln)-“3 P’%U-1, p > 0 (P”“) (n = 2) 

the diffusion. fluxes on the surfaces of the first two drops become equal; then the sec- 
ond drop begins to absorb more of the dissolved substance than the first. Some time 
after that the total fluxes on the second and third drops become equal, and so on. 

We shall first analyze the general case of chains in ilow fields of aperiodic pattern 
on the example of two drops of different radii. For this we investigate the sign of fun- 
ction 

A,i (-t) = e’{Zs” (z) - Zr” (t)} = 

x3 (1 - ysJ(~ - ~~s-l)-rtl - exp ((1 - yss) ~11 + %sysr - i 

where the dependence of coefficients 721 and y2s on the drop radii is defined in 
(4.8). Since db, (z) ldz does not change its sign when z>O, the equation As1 (1;) 

= 0 has not more than one root. Three cases are possible: 1) when x>%, = (2*/O 
- f)“l(n+s)) / then As1 (3 > 0, i. e. the total diffusion tlux on the second drop is 

always greater than on the first; 2) when x < x r, where x1 is the root of equation 

R (Xl) = 0, Q (x) = %3 - 1 + [i - xsy,, (%)I yp2-l (x) 

then A= (T) < 0, i.e. * the total diffusion flux on the first drop in the course of satura- 
tion is always greater than on the second; and 3) when x1 < x < x2 , the total dif- 
fusion flux on the first drop is initially greater than on the second, then at some time 

721 = ~2~ (x), A2l (z23 = 0 the two fluxes become equal, and at z > rzl the total 
flux on the second drop becomes the greater. The following relations hold: 0 < x1 < 
1 <x2 < 2 and ?21 (1) = 1; as1 (xs) = 0; x -+ %, and rsl - CO. 

Let us now investigate the behavior of the ratio of total diffusion fluxes I,’ / I,* 
as z--*00. Using the expressions in (4.8) we obtain 

x 3, i, lim Iso / I,” = foe 
7+-e= 

% < 1, ‘t lirr Zs” i z; = %3 11 - ysr (x) ye2-’ (x)][i - 1(22-’ (%)]_I 

The limiting expr~&ons show that when the radius of the first drop is smaller than that 
of the second, then for fairly co~derable times the total ~f~~on flux on the first is 
negligibly small in comp~son with the flux on the second. If the radius of the first 
drop is greater than that of the second, the total diffusion fluxes on both drops are of 
the same order when T -+ ‘CO. 

In the case of a chain of drops k = I, 2, . , ., kf of various radii the basic con- 
tribution during a fairly long time r to the over-all diffusion flux (on all drops of the 
chain) is from drops with ordinal numbers k,,, 6 k < M, where the number k, 

belongs to the drop of maximum radius. This means that the drop of maximum radius 
determines the law of the diminution with time of total diffusion fluxes on all drops 
moving in the diffusion trail, and when a --$ o. , the total diffusion fluxes on drops 
preceding it can be neglected. 

The following conservation laws apply: 
m 

1’ 
Z,“(f)dz=a3(k), cr(i)=l; k=l,2 ,..., M 

0 
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